
This appendix computes dynamics and steady state of the square of the
idiosyncratic component of permanent income (from which the variance can
be derived).
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Finally, note the relation between p2 and the variance of p:
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where the last line follows because under the other assumptions we have
made, M[p] = 1.

Of course for the preceding derivations to be valid, it is necessary to
impose the parameter restriction ΩE[ψ2] < 1. This requires that income
does not spread out so quickly among consumers who survive as to overcome
the compression of the distribution that arises because of death.


